Preserving organelle vitality: peroxisomal quality control mechanisms in yeast.
نویسندگان
چکیده
Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin-proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes.
منابع مشابه
Lipids and lipid domains in the peroxisomal membrane of the yeast Yarrowia lipolytica.
Biological membranes have unique and highly diverse compositions of their lipid constituents. At present, we have only partial understanding of how membrane lipids and lipid domains regulate the structural integrity and functionality of cellular organelles, maintain the unique molecular composition of each organellar membrane by orchestrating the intracellular trafficking of membrane-bound prot...
متن کاملPichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins.
The peroxisomal protein import machinery plays a central role in the assembly of this organelle in all eukaryotes. Genes encoding components of this machinery, termed peroxins or Pex proteins, have been isolated and characterized in several yeast species and in mammals, including humans. Here we report on one of these components, Pex14p, from the methylotrophic yeast Pichia pastoris. Work in ot...
متن کاملPeroxisomal targeting signal-1 receptor protein PEX5 from Leishmania donovani. Molecular, biochemical, and immunocytochemical characterization.
The human pathogens of the Leishmania and Trypanosoma genera compartmentalize glycolytic and other key metabolic pathways in unique subcellular microbodies called glycosomes, organelles related to the peroxisomes of mammals and yeast. The molecular machinery that carries out the specific targeting of glycosomal proteins to the organelle has not been characterized, although the bulk of glycosoma...
متن کاملDoing the math
The formation of membrane contact sites between cellular organelles is required for proper organelle communication and maintenance in the compartmentalized eukaryotic cell. We recently identified a tether that links peroxisomes to the cortical ER in the yeast, Saccharomyces cerevisiae. The tether is made up of the peroxisome biogenic protein Pex3p and the peroxisome inheritance factor Inp1p, an...
متن کاملA peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells.
In eukaryote cells various mechanisms exist that are responsible for the removal of non-functional proteins. Here we show that in the yeast Hansenula polymorpha (H. polymorpha) a peroxisomal Lon protease, Pln, plays a role in degradation of unfolded and non-assembled peroxisomal matrix proteins. In addition, we demonstrate that whole peroxisomes are constitutively degraded by autophagy during n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS yeast research
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2009